100. HUMANOS API SPECIFICATION
The Orchestration Layer API — Human-AI Routing, Escalation, Safety, Audit
OVERVIEW
The HumanOS API provides programmatic access to HUMAN's orchestration and safety layer. It enables applications to:
- Route tasks intelligently between humans and AI
- Enforce safety boundaries and escalation rules
- Manage human-AI collaboration workflows
- Track decision provenance and accountability
- Audit AI agent behavior
- Enforce ethical constraints (Rule of Threes)
Architecture: REST API with OAuth 2.0 authentication
Protocol Version: 1.0
Base URL: https://api.human.xyz/v1/humanos
Authentication: PATs, OAuth 2.0, Service Account Keys (see 96_api_specification_passport.md)
AI AGENT CLIENT PATTERNS
Living HAIO Context: HumanOS is the orchestration layer where AI agents request routing decisions, report confidence levels, and trigger escalations. This API is the primary interface for AI-human collaboration.
AI Agent Integration Points
| Agent Operation | Endpoint | Purpose |
|---|---|---|
| Request Routing Decision | POST /route |
AI asks: should I handle this or escalate? |
| Report Confidence | POST /confidence |
AI reports uncertainty level |
| Trigger Escalation | POST /escalate |
AI escalates to human |
| Log Action | POST /provenance |
AI logs decision for audit |
| Check Boundaries | GET /boundaries |
AI checks safety constraints |
Fourth Law Implementation
AI agents MUST implement the Fourth Law when calling HumanOS:
# AI Agent routing request with confidence
POST /v1/humanos/route
Content-Type: application/json
X-Agent-ID: urn:human:agent:routing:prod-01
X-Confidence-Score: 0.65
{
"task_id": "task_abc123",
"task_type": "medical_review",
"ai_assessment": {
"can_handle": true,
"confidence": 0.65,
"uncertainty_reason": "edge_case_patient_history"
},
"escalation_recommendation": true,
"human_context": "Patient has unusual medication combination"
}
Response when confidence < 70%:
{
"routing_decision": "escalate_to_human",
"reason": "ai_confidence_below_threshold",
"assigned_human": "did:human:medical_reviewer_1",
"ai_context_provided": true,
"fourth_law_triggered": true
}
AI Agent Audit Requirements
All AI agent HumanOS calls are logged with:
- Agent ID and version
- Task context and type
- Confidence score at decision time
- Routing decision made
- Escalation reason (if applicable)
- Human reviewer assigned (if escalated)
- Decision outcome and feedback
Batch Operations for AI Agents
High-throughput AI systems should use batch routing:
# Batch routing request
POST /v1/humanos/batch-route
Content-Type: application/json
X-Agent-ID: urn:human:agent:workforce:prod-01
{
"tasks": [
{ "task_id": "t1", "type": "simple_review", "confidence": 0.95 },
{ "task_id": "t2", "type": "medical_review", "confidence": 0.60 },
{ "task_id": "t3", "type": "legal_review", "confidence": 0.85 }
]
}
Safety Boundary Checks
Before taking action, AI agents should verify boundaries:
GET /v1/humanos/boundaries?action=approve_payment&amount=50000
X-Agent-ID: urn:human:agent:finance:prod-01
# Response
{
"action_allowed": false,
"reason": "amount_exceeds_ai_authority",
"human_approval_required": true,
"approval_tier": "finance_director"
}
CORE CONCEPTS
Orchestration
Intelligent routing of work:
- AI-First: Attempt AI resolution first
- Human-Required: Route directly to humans
- Hybrid: AI + human collaboration
- Escalation: Escalate when conditions met
Decision Provenance Graph (aka “Context Graph”)
HumanOS is in the execution path of human + agent work. As it routes, escalates, enforces policy, and records outcomes, it emits decision traces (ProvenanceRecords + Attestations) that form a Decision Provenance Graph across entities and time.
- What it captures: not just what happened, but why it was allowed to happen (policies evaluated, exceptions granted, approvals/overrides, and evidence references).
- Why it matters: this graph becomes the “system of record for autonomy” because it is reconstructable, auditable, and cryptographically anchored.
Decision Moments
Points where intelligence choice is made:
- Capability Assessment: Can AI handle this?
- Risk Evaluation: What's the risk level?
- Context Analysis: What's the situational context?
- Routing Decision: Human, AI, or both?
Escalation Rules
Conditions triggering human involvement:
- Uncertainty Threshold: AI confidence < threshold
- Safety Boundary: Approaching dangerous territory
- Ethical Flag: Rule of Threes violation detected
- Complexity: Task too complex for current AI
- Human Request: Human explicitly requested
Provenance
Decision audit trail:
- Who: Human or AI agent identity
- What: Decision or action taken
- When: Timestamp
- Why: Reasoning and context
- How: Process and data used
Important: Provenance in HumanOS is not “debug logging.” It is decision-trace data intended to be stitched into the Decision Provenance Graph and verified via ledger anchors.
Safety Envelope
Boundaries enforced by HumanOS:
- Capability Boundaries: Don't exceed proven abilities
- Ethical Boundaries: Rule of Threes compliance
- Risk Boundaries: Safety thresholds
- Context Boundaries: Appropriate for situation
AUTHENTICATION
Same OAuth 2.0 flow as Passport API.
Required Scopes:
humanos:read- Read routing and audit datahumanos:write- Submit routing requestshumanos:admin- Configure rules and boundariesaudit:read- Access audit logs
API DESIGN STANDARDS
The HumanOS API follows HUMAN's standard API design patterns for consistency across all products.
Error Handling (RFC 7807)
All error responses use RFC 7807 Problem Details format:
HTTP/1.1 422 Unprocessable Entity
Content-Type: application/problem+json
{
"type": "https://api.human.ai/errors/confidence-threshold-error",
"title": "Confidence Threshold Not Met",
"status": 422,
"detail": "AI confidence (0.45) below minimum threshold (0.70) for autonomous action",
"instance": "/v1/humanos/routing",
"errors": [
{
"field": "ai_confidence",
"code": "below_threshold",
"message": "Confidence 0.45 requires human escalation (threshold: 0.70)"
}
],
"escalation": {
"required": true,
"reason": "low_confidence",
"suggested_reviewers": ["did:human:expert_123"]
},
"request_id": "req_abc123"
}
Pagination
All list endpoints use cursor-based pagination:
GET /v1/humanos/audit?task_type=routing&limit=100&cursor=eyJ...
Response: 200 OK
{
"data": [
{"event_id": "evt_123", "type": "routing_decision", ...},
{"event_id": "evt_124", "type": "escalation_triggered", ...}
],
"has_more": true,
"next_cursor": "eyJpZCI6ImV2dF8yMDAifQ",
"total_count": 4837
}
Rate Limiting
All responses include rate limit headers:
HTTP/1.1 200 OK
X-RateLimit-Limit: 1000
X-RateLimit-Remaining: 523
X-RateLimit-Reset: 1702224000
X-RateLimit-Resource: routing-requests
...response body...
Rate limit exceeded:
HTTP/1.1 429 Too Many Requests
Retry-After: 60
Content-Type: application/problem+json
{
"type": "https://api.human.ai/errors/rate-limit-exceeded",
"title": "Rate Limit Exceeded",
"status": 429,
"detail": "You have exceeded the rate limit of 1000 routing requests per minute",
"retry_after_seconds": 60
}
Idempotency
POST/PUT/PATCH/DELETE endpoints support idempotency keys:
POST /v1/humanos/routing
Authorization: Bearer {access_token}
Idempotency-Key: routing_unique_12345
Content-Type: application/json
{
"task_id": "task_abc123",
"ai_confidence": 0.85,
"required_capabilities": ["safety_review"],
"urgency": "high"
}
- Keys cached for 24 hours
- Duplicate requests return cached routing decision
- 409 Conflict if same key with different routing parameters
Webhooks
HumanOS supports webhooks for real-time event notifications:
POST /yourapi.com/webhooks/humanos
Content-Type: application/json
X-Human-Signature: t=1702224000,v1=5257a869b7ecbcd32c0f3870e1438b557f8a9cf32...
X-Human-Delivery-ID: evt_abc123
{
"id": "evt_abc123",
"event": "routing.escalated",
"created_at": "2025-12-10T12:00:00Z",
"data": {
"task_id": "task_xyz789",
"reason": "ai_confidence_below_threshold",
"assigned_human": "did:human:expert_456"
}
}
Webhook Events:
routing.completed- Routing decision maderouting.escalated- Task escalated to humansafety.boundary_violation- Safety boundary triggeredaudit.provenance_logged- Decision provenance recorded
Verification: Use HMAC-SHA256 with timestamp (see AI Labs API spec for code examples)
Filtering & Sorting
List endpoints support standardized query parameters:
# Filter by event type
GET /v1/humanos/audit?event_type=escalation&date__gte=2025-12-01
# Filter by multiple criteria
GET /v1/humanos/routing/history?status=completed&confidence__gte=0.7
# Sort results (- for descending)
GET /v1/humanos/audit?sort=-created_at,confidence
Versioning
- Current version: v1
- Path-based versioning:
/v1/humanos/... - Deprecated versions include
Sunsetheader - 18-month support window after deprecation
- Migration guides at
https://api.human.ai/docs/migrations/
CORS
CORS enabled for authorized origins:
Access-Control-Allow-Origin: https://app.human.ai
Access-Control-Allow-Methods: GET, POST, PUT, PATCH, DELETE
Access-Control-Allow-Headers: Authorization, Content-Type, Idempotency-Key
Access-Control-Expose-Headers: X-RateLimit-Limit, X-RateLimit-Remaining
API ENDPOINTS
1. ROUTING & ORCHESTRATION
Create Routing Request
POST /v1/humanos/routing
Authorization: Bearer {access_token}
Content-Type: application/json
{
"request_id": "req_unique_123",
"task_type": "medical_diagnosis",
"context": {
"patient_age": 45,
"symptoms": ["chest_pain", "shortness_of_breath"],
"urgency": "high",
"existing_conditions": ["hypertension"]
},
"ai_agent_id": "agent_medical_assistant",
"ai_confidence": 0.72,
"ai_recommendation": "possible_cardiac_event",
"required_capabilities": [
{
"capability_id": "cap_medical_diagnosis",
"min_weight": 0.85
}
],
"safety_requirements": {
"max_risk_level": "medium",
"human_oversight_required": true
},
"escalation_conditions": {
"uncertainty_threshold": 0.8,
"life_safety_flag": true
}
}
Response:
{
"routing_id": "routing_abc123",
"decision": "escalate_to_human",
"reason": "life_safety_flag_triggered",
"assigned_to": {
"type": "human",
"did": "did:human:doctor_xyz",
"capabilities_matched": [
{
"capability_id": "cap_medical_diagnosis",
"weight": 0.94
}
]
},
"escalation_level": "urgent",
"estimated_response_time": 180,
"safety_analysis": {
"risk_level": "high",
"safety_boundaries_checked": 5,
"ethical_constraints_checked": 3,
"all_constraints_met": true
},
"provenance": {
"decision_made_by": "humanos_core",
"timestamp": "2025-11-25T23:00:00Z",
"rule_triggered": "life_safety_escalation",
"ledger_anchor": {
"transaction_id": "tx_routing_789",
"block_number": 987658
}
}
}
Get Routing Status
GET /v1/humanos/routing/{routing_id}
Authorization: Bearer {access_token}
Response:
{
"routing_id": "routing_abc123",
"status": "in_progress",
"decision": "escalate_to_human",
"assigned_to": {
"type": "human",
"did": "did:human:doctor_xyz"
},
"created_at": "2025-11-25T23:00:00Z",
"assigned_at": "2025-11-25T23:01:30Z",
"progress": {
"steps_completed": 1,
"steps_total": 3,
"current_step": "human_assessment"
},
"estimated_completion": "2025-11-25T23:10:00Z"
}
2. ESCALATION MANAGEMENT
Configure Escalation Rules
POST /v1/humanos/escalation/rules
Authorization: Bearer {admin_token}
Content-Type: application/json
{
"rule_name": "medical_high_risk_escalation",
"description": "Escalate all high-risk medical decisions to licensed physicians",
"conditions": [
{
"condition_type": "risk_level",
"operator": ">=",
"value": "high"
},
{
"condition_type": "domain",
"operator": "==",
"value": "medical"
},
{
"condition_type": "ai_confidence",
"operator": "<",
"value": 0.85
}
],
"actions": [
{
"action": "escalate_to_human",
"target_capability": "cap_medical_diagnosis",
"min_weight": 0.90,
"urgency": "high"
},
{
"action": "notify_supervisor",
"notification_threshold": "immediate"
}
],
"priority": "critical",
"enabled": true
}
Response:
{
"rule_id": "rule_medical_abc",
"rule_name": "medical_high_risk_escalation",
"status": "active",
"created_at": "2025-11-25T23:15:00Z",
"applies_to": ["medical", "healthcare"],
"estimated_trigger_rate": "12%"
}
Trigger Manual Escalation
POST /v1/humanos/escalation/manual
Authorization: Bearer {access_token}
Content-Type: application/json
{
"routing_id": "routing_abc123",
"escalation_reason": "requesting_second_opinion",
"requested_by": "did:human:doctor_xyz",
"target_capability": "cap_cardiology_specialist",
"urgency": "high",
"context": {
"initial_assessment": "possible_cardiac_event",
"uncertainty_areas": ["ecg_interpretation"]
}
}
Response:
{
"escalation_id": "escalation_xyz789",
"status": "assigned",
"assigned_to": {
"type": "human",
"did": "did:human:cardiologist_abc",
"capabilities": [
{
"capability_id": "cap_cardiology_specialist",
"weight": 0.96
}
]
},
"estimated_response_time": 300,
"escalation_chain": [
{
"level": 1,
"did": "did:human:doctor_xyz",
"timestamp": "2025-11-25T23:00:00Z"
},
{
"level": 2,
"did": "did:human:cardiologist_abc",
"timestamp": "2025-11-25T23:20:00Z"
}
]
}
3. SAFETY BOUNDARIES
Check Safety Boundaries
POST /v1/humanos/safety/check
Authorization: Bearer {access_token}
Content-Type: application/json
{
"action": "prescribe_medication",
"context": {
"medication": "high_dose_beta_blocker",
"patient_context": {
"age": 72,
"existing_conditions": ["asthma"]
}
},
"actor": {
"type": "ai_agent",
"agent_id": "agent_prescribing_assistant",
"confidence": 0.78
}
}
Response:
{
"boundary_check_id": "check_abc123",
"allowed": false,
"violations": [
{
"boundary_type": "capability_boundary",
"severity": "critical",
"description": "AI agents cannot prescribe medication without physician oversight"
},
{
"boundary_type": "safety_boundary",
"severity": "high",
"description": "Beta blockers contraindicated with asthma - human review required"
}
],
"required_action": "escalate_to_human",
"recommended_capabilities": [
{
"capability_id": "cap_physician_licensed",
"min_weight": 0.95
}
],
"rule_of_threes_analysis": {
"good_for_human": "uncertain",
"good_for_humanity": "uncertain",
"good_for_HUMAN": true,
"overall_assessment": "requires_human_judgment"
}
}
Get Safety Configuration
GET /v1/humanos/safety/config?domain=medical
Authorization: Bearer {access_token}
Response:
{
"domain": "medical",
"boundaries": [
{
"boundary_id": "medical_prescription_boundary",
"type": "capability_boundary",
"description": "Only licensed physicians can prescribe medication",
"enforcement": "strict",
"exceptions": "none"
},
{
"boundary_id": "medical_diagnosis_boundary",
"type": "risk_boundary",
"description": "Life-threatening diagnoses require human confirmation",
"enforcement": "strict",
"escalation_required": true
}
],
"risk_thresholds": {
"low": 0.3,
"medium": 0.6,
"high": 0.85,
"critical": 0.95
},
"escalation_rules": 12,
"last_updated": "2025-11-20T00:00:00Z"
}
4. DECISION PROVENANCE
Get Decision History
GET /v1/humanos/provenance/{routing_id}
Authorization: Bearer {access_token}
Response:
{
"routing_id": "routing_abc123",
"decision_chain": [
{
"step_id": "step_1",
"timestamp": "2025-11-25T23:00:00Z",
"actor": {
"type": "ai_agent",
"agent_id": "agent_medical_assistant",
"did": "did:human:agent_abc"
},
"action": "initial_assessment",
"input_data": {
"symptoms": ["chest_pain", "shortness_of_breath"]
},
"output_data": {
"recommendation": "possible_cardiac_event",
"confidence": 0.72
},
"reasoning": "Pattern matches typical cardiac symptoms, but confidence below threshold due to atypical presentation"
},
{
"step_id": "step_2",
"timestamp": "2025-11-25T23:00:15Z",
"actor": {
"type": "humanos_core",
"instance_id": "humanos_1"
},
"action": "routing_decision",
"reasoning": "Life safety flag triggered, escalating to human physician",
"rules_evaluated": [
{
"rule_id": "rule_medical_abc",
"triggered": true,
"reason": "risk_level_high_and_confidence_low"
}
]
},
{
"step_id": "step_3",
"timestamp": "2025-11-25T23:01:30Z",
"actor": {
"type": "human",
"did": "did:human:doctor_xyz"
},
"action": "physician_assessment",
"input_data": {
"ai_recommendation": "possible_cardiac_event",
"patient_data": {...}
},
"output_data": {
"diagnosis": "acute_coronary_syndrome",
"treatment_plan": "immediate_hospitalization",
"confidence": 0.92
},
"reasoning": "ECG shows ST-elevation, elevated troponin levels confirm ACS"
}
],
"ledger_anchors": [
{
"step_id": "step_1",
"transaction_id": "tx_prov_001",
"block_number": 987658
},
{
"step_id": "step_2",
"transaction_id": "tx_prov_002",
"block_number": 987658
},
{
"step_id": "step_3",
"transaction_id": "tx_prov_003",
"block_number": 987659
}
],
"accountability": {
"primary_decision_maker": "did:human:doctor_xyz",
"ai_support_provided": true,
"human_oversight_present": true,
"all_safety_checks_passed": true
}
}
5. AI AGENT MONITORING
Register AI Agent
POST /v1/humanos/agents/register
Authorization: Bearer {admin_token}
Content-Type: application/json
{
"agent_name": "Medical Assistant Agent",
"agent_type": "diagnostic_support",
"capabilities": [
{
"capability_id": "cap_symptom_analysis",
"confidence_level": 0.85
},
{
"capability_id": "cap_medical_knowledge",
"confidence_level": 0.90
}
],
"safety_constraints": {
"cannot_prescribe": true,
"requires_human_confirmation": true,
"max_risk_level": "medium"
},
"model_info": {
"model_type": "GPT-4-Medical",
"version": "2025-11",
"training_data": "medical_corpus_v3"
}
}
Response:
{
"agent_id": "agent_medical_abc",
"did": "did:human:agent_medical_abc",
"status": "active",
"registered_at": "2025-11-25T23:30:00Z",
"safety_boundaries_configured": 3,
"monitoring_enabled": true,
"api_key": "agent_key_secret_abc123"
}
Get Agent Performance
GET /v1/humanos/agents/{agent_id}/performance?period=30d
Authorization: Bearer {access_token}
Response:
{
"agent_id": "agent_medical_abc",
"period": "30d",
"total_requests": 3845,
"successful_resolutions": 2934,
"escalations_to_human": 911,
"escalation_rate": 0.237,
"avg_confidence": 0.82,
"safety_violations": 0,
"boundary_checks_passed": 3845,
"accuracy_metrics": {
"human_agreement_rate": 0.94,
"false_positive_rate": 0.03,
"false_negative_rate": 0.02
},
"performance_trend": "improving",
"areas_for_improvement": [
"rare_condition_detection",
"pediatric_cases"
]
}
6. AUDIT & COMPLIANCE
Get Audit Log
GET /v1/humanos/audit?start_date=2025-11-20&end_date=2025-11-25&type=escalation
Authorization: Bearer {audit_token}
Response:
{
"audit_entries": [
{
"entry_id": "audit_001",
"timestamp": "2025-11-25T23:00:00Z",
"event_type": "escalation_triggered",
"routing_id": "routing_abc123",
"actor": {
"type": "humanos_core"
},
"details": {
"rule_triggered": "medical_high_risk_escalation",
"risk_level": "high",
"assigned_to": "did:human:doctor_xyz"
},
"ledger_anchor": {
"transaction_id": "tx_audit_001",
"block_number": 987658
}
}
],
"total": 487,
"page": 1
}
Generate Compliance Report
POST /v1/humanos/compliance/report
Authorization: Bearer {admin_token}
Content-Type: application/json
{
"report_type": "regulatory_compliance",
"period": "2025-Q4",
"domains": ["medical", "financial"],
"include_violations": true
}
Response:
{
"report_id": "report_compliance_q4",
"period": "2025-Q4",
"generated_at": "2025-11-25T23:45:00Z",
"summary": {
"total_decisions": 45678,
"human_oversight_decisions": 12456,
"ai_autonomous_decisions": 33222,
"safety_violations": 0,
"ethical_flags": 23,
"escalations_triggered": 3421,
"escalation_rate": 0.075
},
"compliance_status": {
"hipaa_compliant": true,
"gdpr_compliant": true,
"sox_compliant": true,
"rule_of_threes_adherence": 0.998
},
"recommendations": [
"Continue current oversight protocols",
"Review 23 ethical flags for pattern analysis"
],
"report_url": "https://reports.human.xyz/compliance/report_compliance_q4.pdf"
}
DATA SCHEMAS
Routing Request Schema
{
"request_id": "string",
"task_type": "string",
"context": "object (flexible)",
"ai_agent_id": "string",
"ai_confidence": "float (0.0-1.0)",
"required_capabilities": [
{
"capability_id": "string",
"min_weight": "float (0.0-1.0)"
}
],
"safety_requirements": "object",
"escalation_conditions": "object"
}
Routing Decision Schema
{
"routing_id": "string",
"decision": "ai_autonomous | escalate_to_human | hybrid_collaboration",
"reason": "string",
"assigned_to": {
"type": "human | ai_agent",
"did": "string (DID)",
"agent_id": "string (for AI)"
},
"escalation_level": "none | low | medium | high | urgent",
"safety_analysis": "object",
"provenance": "object"
}
RATE LIMITING
| Endpoint Category | Rate Limit | Window |
|---|---|---|
| Routing Requests | 5000 requests | 1 hour |
| Safety Checks | 10000 requests | 1 hour |
| Provenance Queries | 2000 requests | 1 hour |
| Agent Monitoring | 1000 requests | 1 hour |
| Audit Logs | 500 requests | 1 hour |
ERROR CODES
Same as Passport API, plus:
safety_violation: Safety boundary violatedescalation_required: Human escalation required but not providedagent_not_registered: AI agent not registered in HumanOSrule_conflict: Multiple rules triggered with conflicting actions
WEBHOOKS
Available Events
routing.decided: Routing decision madeescalation.triggered: Escalation rule triggeredsafety.violation: Safety boundary approached or violatedagent.registered: New AI agent registeredaudit.critical: Critical audit event
Execution-path requirement: Every webhook event above MUST correspond to a persisted provenance event and (where applicable) a signed attestation with a ledger anchor. This is what keeps the Decision Provenance Graph complete and audit-grade.
SDKS & CLIENT LIBRARIES
Official SDKs:
- JavaScript/TypeScript:
npm install @human/humanos-sdk - Python:
pip install human-humanos - Go:
go get github.com/human/humanos-go
Example (JavaScript):
import { HumanOSClient } from '@human/humanos-sdk';
const client = new HumanOSClient({
clientId: 'your_client_id',
clientSecret: 'your_client_secret'
});
// Request routing decision
const routing = await client.routing.create({
task_type: 'medical_diagnosis',
ai_confidence: 0.72,
safety_requirements: {
max_risk_level: 'medium',
human_oversight_required: true
}
});
console.log(`Decision: ${routing.decision}`);
console.log(`Assigned to: ${routing.assigned_to.did}`);
// Check safety boundaries
const safetyCheck = await client.safety.check({
action: 'prescribe_medication',
actor: { type: 'ai_agent', agent_id: 'agent_123' }
});
if (!safetyCheck.allowed) {
console.log('Action blocked:', safetyCheck.violations);
}
// Get provenance for audit
const provenance = await client.provenance.get(routing.routing_id);
console.log('Decision chain:', provenance.decision_chain);
SECURITY CONSIDERATIONS
Routing Integrity
- All routing decisions cryptographically signed
- Immutable provenance on distributed ledger
- Multi-signature for critical decisions
Safety Enforcement
- Hardware-enforced boundaries where possible
- Continuous monitoring and anomaly detection
- Automatic escalation on boundary approach
Agent Accountability
- All AI agents have Machine Identity (DID)
- Complete audit trail for all actions
- Performance monitoring and evaluation
Compliance
- Built-in compliance with major regulations (HIPAA, GDPR, SOX)
- Audit logs retained for regulatory requirements
- Transparent provenance for legal proceedings
VERSIONING & DEPRECATION
Current Version: v1
Deprecation Policy: 18 months notice for breaking changes
Changelog: https://docs.human.xyz/humanos/changelog
Metadata
File: 100_api_specification_humanos.md
Status: Complete
Version: 1.0
Created: November 25, 2025
Purpose: Enable developer integration with HumanOS (Orchestration Layer)
Cross-References (Related API & HumanOS Files):
- See:
22_humanos_orchestration_core.md- Core HumanOS orchestration architecture - See:
23_humanos_safety_and_escalation.md- Safety & escalation framework - See:
36_humanos_technical_standards_and_protocol.md- Technical standards & protocols - See:
33_policy_engine_and_boundary_enforcement.md- Policy engine integration - See:
96_api_specification_passport.md- Passport API for identity verification - See:
97_api_specification_capability_graph.md- Capability API for routing decisions - See:
98_api_specification_workforce_cloud.md- Workforce Cloud API for task assignment
Strategic Purposes:
- Building (developer enablement)
- Governance (safety enforcement)
- Market (enterprise trust)
Final Note: This API is the heart of HUMAN's human-AI orchestration protocol. It ensures every decision is safe, accountable, and aligned with human values.